

DEPARTMENT OF ECOLOGY

Publication No. 78-e34 WA-07-0010

7272 Cleanwater Lane, Olympia, Washington 98504

206/753-2353

MEMORANDUM

July 14, 1978

To: Roger Stanley

From: Bill Yake and Mike Morhous

Re: Weyco Thermo-Mechanical Pulp Mill - Everett

Class II Inspection

Date: June 13-14-78

Findings and Conclusions:

A Class II inspection was conducted on June 13-14, 1978, at the Weyer-haeuser Thermo-Mechanical Pulp Mill in Everett, Washington. Roger Stanley and Bob Bishop of the Industrial Section (DOE), Bill Yake and Mike Morhous of Wastewater Monitoring (DOE) and Rich Eger of Weyerhaeuser Co. were present. Bill Wilson and Stacy Turner (UNOX operator) were involved in the review of laboratory procedures.

Thermo-mechanical pulp wastewater is treated in a pure oxygen (UNOX) activated sludge system without primary clarification. Nutrient suppliments in the form of aqueous ammonia (3.4 to 3.5 lb. N/100 lb. BOD_5 loaded) and phosphoric acid (0.5 to 1.0 lb. P/100 lb. BOD_5 loaded) are added prior to aeration. Wastewater temperatures are high (approximately 40°C) throughout the system.

Influent and effluent composite samples were taken with both mill and DOE samplers. In addition, grab samples of the wastewater prior to final clarification of the 004 discharge and of final 001 effluent (for coliforms) were collected. The results of the analyses of these samples are attached.

The mill laboratory had been experiencing unrealistically low ${\rm BOD}_5$ results for approximately six months prior to the inspection. Despite considerable effort to isolate and remedy the cause of these apparent errors the difficulties were unresolved. A thorough review of laboratory techniques was undertaken during this inspection and the apparent cause of the discrepancy isolated (see Laboratory Procedures and Techniques). Unfortunately the test procedure was not corrected before the samples from this inspection were analysed by the mill laboratory. Thus, the mill lab ${\rm BOD}_5$ results included here are incorrect. The Industrial Section will probably wish to collect, split, and analyse another sample from the mill to verify the quality of current, reported effluent ${\rm BOD}_5$ values.

Based on the results of this inspection the mill was complying with NPDES suspended solids limitations. BOD₅ discharge was 25-60% in excess of permit limitations. Analyses for additional parameters revealed no unusual values except in the case of coliforms. The 001 discharge had very high quantities of total coliforms (2,100,000 to 2,300,000/100 ml) and fecal coliforms (100,000 to 160,000/100 ml). These values are greatly in excess of permit limitations on municipal facilities discharging to marine waters. The growth of coliforms in the UNOX system is possibly promoted by high wastewater temperatures. The 004 discharge also contained substantial total coliform (190,000/100 ml) and fecal coliform (13,000/100 ml) concentrations.

The UNOX system appeared to be operating well during the inspection and was producing an activated sludge with good settling characteristics (SVI = 65 ml/g).

WY:ee

cc: Dick Cunningham

Central Files through Skip Harlan

24 nour composite sampler installations Sampler Date and Time Location Installed 0955 - 6/13/78 1. Influent Influent tap to 2 liter bottle to compositor. aliquot - 250 ml/30 min. 2. Effluent 0940 - 6/13/78 Effluent tap to 2 liter bottle to compositor. aliquot - 250 m1/30 min. 3. aliquot -Grab Samples Date and Analysis Sample Time Location 6/13/78 - 1100 Solids 1. Final clarifier influent well 6/14/78 - 1000 6/14/78 - 0900 Coliforms Final clarifier launders End of concrete channel 2. COD, Solids, pH, Cond., 3. Color, Turb., Phenols, Grease, Nutrients, Coliforms before culvert 4. 6/21/78 - 1210 Coliforms Final clarifier launders 5. 6/21/78 - 1210 Coliforms Final effluent tap Flow Measuring Device Type In line, magnetic flowmeter 2. Dimensions a. Meets standard criteria Yes In-line, could not be assessed. No Explain: b. Accuracy check Actual Instan. Flow Recorder Reading Recorder Accuracy (% of inst. flow) l. 2. 3. is within accepted 15% error limitations is in need of calibration Field Data

Parameter	Date and Time	Sample Location Resu	lt
Settleable Solids pH, Cond. pH, Cond. pH, Cond., Settleable solids	6/13/78 - 0950 6/13/78 - 1045 6/13/78 - 1100 6/13/78 - 1100	Influent Influent Effluent Final clarifier in-well	8 ml/l See tables See tables See tables
pH, Cond.	6/14/78 - 1000	002 at concrete sump	See tables

The Weyco Thermo-Mechanical Pulp Mill analyses are limited primarily to BOD5, suspended solids and pH. The suspended solids analyses were reviewed using the 'Laboratory Procedural Survey' questionnaire and inspection of laboratory facilities and equipment. This analysis is being performed correctly. pH results from continuous monitors and mill lab instruments were checked against DOE field and lab values and compared favorably.

The mill had been recording low BOD5 values for about 6 months prior to the inspection. Extensive effort by labs at both the Everett thermomechanical pulp mill and Kraft mill had previously failed to isolate the cause of the discrepancy. Review of test procedures during this inspection (6/13/78) indicated that saturated water calibration of the mill's dissolved oxygen meter might be responsible for faulty D.O. values obtained from the dilutions. By 6/14/78 the D.O. meter and probe had been calibrated at low D.O. concentrations against the Winkler Method. The meter was reading 1-2 mg/l high. The meter/probe was not repaired/recalibrated until after the inspection analyses were run, thus mill values reported here are incorrect.

A second possible source of error is the mill's practice of freezing BOD samples for up to 6 days prior to running the test. Freezing of BOD samples is not in compliance with Standard Methods and other accepted procedures. The mill split a sample from the mill's effluent compositor and ran one BOD analysis immediately while freezing the second portion for one week prior to analysis. The extent of the discrepancies caused by these two analytical problems can be noted in the following table.

Summary of BOD_5 (mg/1) Results

DOE	Lab.	
T.M.	Mill	Lab

	Infl	uent	Eff1	uent
	DOE Comp.	Mill Comp.	DOE Comp.	Mill Comp.
T	> 750	>740	108	131
	620	563	65	75 45*

^{*} sample frozen one week prior to analysis

Since the inspection, the mill has obtained sugar standards and BOD_5 analyses appear to be improved. The Industrial Section will probably wish to make an additional split of mill effluent and satisfy themselves with regard to present analytical methods at the mill.

In addition to the problems noted above, two additional procedural deficiencies were noted in the BOD analysis.

- 1. Nutrients are not added to the blanks, this should be corrected.
- 2. Nutrient stock solutions are not stored in the dark and may be exceeding their shelf life.

The following tables are comparisons of laboratory results from 24 hour composite(s) together with NPDES permit effluent limitations. Additional results pertinent to inspection have also been included.

TABLE 1

			IABLE						
		DOE Labora	DOE Laboratory Results	th S	Мe	yco Labora	Weyco Laboratory Results	t s	NPDES (Monthly Average)
	DOE Composites	ses	Weyco Com	Composites	DOE COI	Composites	Weyco C	Composites	
	Influent	001 Effluent	Influent	001 Effluent	Influent	001 Effluent	Influent	001 Effluent	
BOD ₅ (mg/1) 51bs/day	>750	108 3150	>740	131 3910	620 ⁴	65 1900	563	75 ⁴ 2240	2500
TSS (mg/1) lbs/day	276	67 1950	430	126 3760	320	67 1960	327	78 2330	3500
Total Plant Flow (MGD)	3.50	-		3.58		3.50		3.58	
COD (mg/1)	2790	1060	2870	1030				886	
NH3-N (mg/l)	9.0	4.7		ning washing washing and a season					
NO ₂ -N (mg/l)	<0.02	<0.02							
NO ₃ -N (mg/1)	<0.01	<0.01							
0-P0 ₄ -P (mg/1)	0.3	0.3							
T-PO ₄ -P (mg/1)		ω.			Antonio antonio del Antonio de				
Total Coliform (#/100 ml)		2,300,000 ¹ 2,500,000 ² 2,100,000 ³							
1 Grab, 6/14/78, 1000, from 2 Grab, 6/21/78, 1210, from 3 Grab, 6/21/78, 1210, from 4 Results questionable, see	1000, from 1210, from 1210, from onable, see	=	clarifier launders clarifier launders sampler tap	unders					

The following tables are comparisons of laboratory results from 24 hour composite(s) together with NPDES permit effluent limitations. Additional results pertinent to inspection have also been included.

			TABLE 1 (Continued)	q)	-				NPDES
		DOE Labora	tory Results	ts	We	yco Labora	Weyco Laboratory Results	ts	(Monthly Average)
	DOE Composit	tes	Weyco Com	Composites	DOE Co	Composites	Weyco C	Composites	
	Influent	001 Effluent	Influent	001 Effluent	Influent	001 Effluent	Influent	001 Effluent	
Fecal Coliform (#/100 ml)		> 90,000 ¹ 160,000 ² 100,000 ³							
% Klebsiellia		50% ² 80% ³							
Total Solids (mg/l)	3080	1960	2910	1930					
Total Non-Vol. Solids (mg/l)	1750	1280	1690	1280	307g, -1880 No. 7				
Total Sus. Solids (mg/l)	276	29	430	126					
Total Sus. Non-Vol. Solids (mg/l)) 36	21	59	40		:			
Turbidity (NTU)	180	36		-					
Color (color units)	2420	4360							
T. Q.	∞ ∞ o ∴	6.0 6.4* 6.5*	7.2	7.5					6-9 inst
1 Grab, 6/14/78, 2 Grab, 6/21/78, 3 Grab, 6/21/78, * Field Analysis ** Field Analysis	1000, from 1210, from 1210, from - composit - grab	econdary econdary omposite	clarifier clarifier sampler ta	launders launders o					

The following tables are comparisons of laboratory results from 24 hour composite(s) tegether with NPDES permit effluent limitations. Additional results pertinent to inspection have also been included.

al Solids

	≿	Chromium mg/Kg dry wt.	∝t.	•	
	iry	Ą	Ş	×	3
% Total Solids	Cadmium mg/Kg dry wt.	3/Kg	Copper mg/Kg dry wt.	Lead mg/Kg dry wt.	7inc ma/Ka drv wt.
So	mg'	Ĕ	1/61	X	X X
[g	Ë	i.	ll va	/gm	mo/
Tot	dmi	เรอก	oddo	ead	2
2%	$\ddot{\circ}$	\ddot{c}	$\ddot{\circ}$		1

	TABLE (Cont	TABLE 1 (Continued)					NPDES
tory	Laboratory Results	ts	We	Weyco Laboratory Results	itory Resul		Aver
Re	Weyco Com	Composites	DOE CO	Composites	Weyco C	Composites	
001 Effluent In	Influent	001 Effluent	Influent	001 Effluent	Influent	001 Effluent	
							Station describes purposables come pur and desired collection programs programs
	197-15000000000000000000000000000000000000						
							M* TO COMMAND AND AND AND AND AND AND AND AND AND
	netting melge the offen allene, and adjacent of the col						
	And the second second second		***************************************				

The following table is a comparison of laboratory results from 24 hour composite(s) together with NPDES permit effluent limitations. Additional results pertinent to this inspection have also been included.

30D ₅ mg/l lbs/day rss mg/l lbs/day lotal Plant Flow rED pH Sp. Cond. (unhos/cm)	UNOX Effluent 6.2 6.2* 1890 2010*	DOE 002 8.0*	004 Discharge 7 6.9 6.3*	
lbs/day PSS mg/l Lbs/day Potal Plant Flow PD pH Sp. Cond. (whos/cm)	6.2* 1890		6.9	
lbs/day Notal Plant Flow CD pH Sp. Cond. (unhos/cm)	6.2* 1890		6.9	
pH Sp. Cond. (\text{\tin\text{\texi}\text{\text{\texit{\texi}\text{\text{\texi}\text{\text{\texict{\texi}\text{\text{\texi}\text{\texi}\text{\texi}\text{\text{\text{\texi}\text{\texi}\t	6.2* 1890			
Sp. Cond. (umhos/cm)	6.2* 1890			Ī
	1890	72*	1 0.5	
T 1 (3.7:10 (3.7.1)	£010		113 122*	
Tot. Solids (mg/l) Tot. Non-Vol. Solids (mg/l)	9680 1570		95 55	
Tot. Sus. Solids (mg/l)	8760		7	
Tot. Sus. Non-Vol. Solids (mg/l)	360		4	
Settleable Solids (mg/l)	570			
SVI (ml/g) COD (mg/l)	65		44	
Tot. Coli. (#/100 ml)			190,000 ²	
Fecal Coli. (#/100 ml)			13,000 ²	
% KES			100% 0.02	
NH ₃ -N (mg/1) NO ₂ -N (mg/1)			<0.02	
NO ₃ -N (mg/1)			0.01	
0-P0 ₄ -P (mg/1)			0.0]	
T-PO ₄ -P (mg/1)			0.08	
Total Oils (mg/l)			4	
Phenols (mg/l)			0.004	

^{*} Field Analysis-grab "<" is "less than" and ">" is "greater than"

NPDES (Monthly average)

No. 004 discharge addressed in permit

¹⁾ Prior to final clarification

²⁾ Grab sample